On best rank one approximation of tensors

نویسندگان

  • Shmuel Friedland
  • Volker Mehrmann
  • Renato Pajarola
  • Susanne K. Suter
چکیده

Today, compact and reduced data representations using low rank data approximation are common to represent high-dimensional data sets in many application areas as for example genomics, multimedia, quantum chemistry, social networks or visualization. In order to produce such low rank data representations, the input data is typically approximated by so-called alternating least squares (ALS) algorithms. However, not all of these ALS algorithms are guaranteed to converge. To address this issue, we suggest a new algorithm for the computation of a best rank one approximation of tensors, called alternating singular value decomposition. This method is based on the computation of maximal singular values and the corresponding singular vectors of matrices. We also introduce a modification for this method and the alternating least squares method, which ensures that alternating iterations will always converge to a semi-maximal point. (A critical point in several vector variables is semi-maximal if it is maximal with respect to each vector variable, while other vector variables are kept fixed.) We present several numerical examples that illustrate the computational performance of the new method in comparison to the alternating least square method. Copyright c © 2013 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orthogonal Rank-two Tensor Approximation: a Modified High-order Power Method and Its Convergence Analysis

With the notable exceptions that tensors of order 2, that is, matrices always have best approximations of arbitrary low ranks and that tensors of any order always have the best rank-one approximation, it is known that high-order tensors can fail to have best low rank approximations. When the condition of orthogonality is imposed, even at the most general case that only one pair of components in...

متن کامل

Orthogonal Low Rank Tensor Approximation: Alternating Least Squares Method and Its Global Convergence

With the notable exceptions of two cases — that tensors of order 2, namely, matrices, always have best approximations of arbitrary low ranks and that tensors of any order always have the best rank-one approximation, it is known that high-order tensors may fail to have best low rank approximations. When the condition of orthogonality is imposed, even under the modest assumption that only one set...

متن کامل

Best Rank-One Tensor Approximation and Parallel Update Algorithm for CPD

A novel algorithm is proposed for CANDECOMP/PARAFAC tensor decomposition to exploit best rank-1 tensor approximation. Different from the existing algorithms, our algorithm updates rank-1 tensors simultaneously in-parallel. In order to achieve this, we develop new all-at-once algorithms for best rank-1 tensor approximation based on the Levenberg-Marquardt method and the rotational update. We sho...

متن کامل

On the Global Convergence of the Alternating Least Squares Method for Rank-One Approximation to Generic Tensors

Tensor decomposition has important applications in various disciplines, but it remains an extremely challenging task even to this date. A slightly more manageable endeavor has been to find a low rank approximation in place of the decomposition. Even for this less stringent undertaking, it is an established fact that tensors beyond matrices can fail to have best low rank approximations, with the...

متن کامل

The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors

In this paper we discuss the notion of singular vector tuples of a complex valued d-mode tensor of dimension m1 × . . . × md. We show that a generic tensor has a finite number of singular vector tuples, viewed as points in the corresponding Segre product. We give the formula for the number of singular vector tuples. We show similar results for tensors with partial symmetry. We give analogous re...

متن کامل

Convergence of Alternating Least Squares Optimisation for Rank-One Approximation to High Order Tensors

The approximation of tensors has important applications in various disciplines, but it remains an extremely challenging task. It is well known that tensors of higher order can fail to have best low-rank approximations, but with an important exception that best rank-one approximations always exists. The most popular approach to low-rank approximation is the alternating least squares (ALS) method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013